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INTRODUCTION TO GRAPH-BASED LEARNING

GRAPH NEURAL NETWORKS

[Sperduti and Starita, 1997] gave one of the first suggestions on
using neural networks with graph-structure data

, but
[Gori et al., 2005] constructed a model that is much akin to today’s
architecturesand in [Scarselli et al., 2009] they reaffirmed the model
in its full potential.
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INTRODUCTION TO GRAPH-BASED LEARNING

THE GRAPH NEURAL NETWORK MODEL

Main Ideas:

1. Build the network of neural modules according to the input
graph structure

2. Propagate information until it converges
3. Readout desired information through another neural module
4. [Scarselli et al., 2009] One could adapt this to work with

different “kinds” of nodes (i.e. the edge and graph nodes in
[Battaglia et al., 2018])
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THE GRAPH NEURAL NETWORK MODEL:
UNROLLING IN TIME
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THE GRAPH NEURAL NETWORK MODEL:
RECURRENT CONNECTIONS
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INTRODUCTION TO GRAPH-BASED LEARNING

MATHEMATICAL FORMALISATION

With sum-aggregation, it is easy to organise the propagation as
matrix multiplication. Given an adjacency matrix M with shape
(n, n), the learned function f , and the current node “state” ht with
shape (n, d), we have:

ht+1 = f(M× ht)

Which translates, on a node-to-node basis as:

ht+1
n = f(

∑
j∈N (n)

ht
j)

With N (n) being the neighbourhood of node n.
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INTRODUCTION TO GRAPH-BASED LEARNING

MESSAGE-PASSING NEURAL NETWORKS

Same principles as [Gori et al., 2005, Scarselli et al., 2009]:

• A separate “messaging” function added between
communicating nodes.

• “Messages” propagated for a given number of iterations instead
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INTRODUCTION TO GRAPH-BASED LEARNING

MPNN “BLOCKS”

We’ll use the following graphical representation for simplifying the
MPNN blocks, ellipses are state tensors, rectangles are learned
functions, diamonds represent matrix multiplication (or any other
type of neighbourhood aggregation), circles (not present) are
pointwise operations, and if two arrows join at a point their tensors
are most likely concatenated for every tuple of node:

ht m Mh→h f ht+1

15
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INTRODUCTION TO GRAPH-BASED LEARNING

DETAILS LEFT OUT

• Messaging functions often take more than just the source’s
embedding.

• Neighbourhood aggregation can be made in many ways:
• Sum-aggregation [Gori et al., 2005, Scarselli et al., 2009,

Gilmer et al., 2017, Selsam et al., 2018, Xu et al., 2019]
• Average-aggregation [Kipf and Welling, 2017]
• Attentional sum-aggregation [Velickovic et al., 2018]
• Product-aggregation
• Or any other order-invariant function

• Readout functions can be really diverse, using only specific
nodes, all nodes of a kind/type, pairs of nodes, etc...

• Batching of different input graphs (done as a block-diagonal
matrix)

16
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INTRODUCTION TO GRAPH-BASED LEARNING

GRAPH CONVOLUTIONS

Independently, generalisations of convolutions to graph-domains,
such as [Kipf and Welling, 2017], led to an architecture similar to
[Scarselli et al., 2009], only with no recurrent connection, untied
weights, and average-aggregation instead of sum-aggregation.

17
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INTRODUCTION TO GRAPH-BASED LEARNING

GRAPH NETWORKS

[Battaglia et al., 2018] suggests the generalisation of the concept of
graph neural networks to models other than neural networks, builds
upon this idea of inductive bias and argues for three specific
kinds/types of nodes: Vertex, Edge and Graph-level nodes.

18
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INTRODUCTION TO GRAPH-BASED LEARNING

RECAP

We can:
• Assemble neural modules in the configuration of the input

graphs and propagate information through neighbours.

• Work with different “kinds”/types of nodes by training different
“update” and “message” functions, working on different sets of
embeddings, and different adjacency matrices (we’ll see
examples soon).

• Read out the embeddings at the last layer and use them to
provide an answer to the problem at hand.
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GRAPH-BASED LEARNING FOR SUPERPIXEL IMAGES

MAIN IDEAS

• Images have superpixel representations

• These representations can be seen as a graph of superpixels
• Use graph-based methods to work with this data
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SUPERPIXEL GRAPH
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GRAPH-BASED LEARNING FOR SUPERPIXEL IMAGES

POSSIBLE FEATURES

• Color mean/std/Gram matrix (variance matrix)

• Position mean/std/Gram matrix (variance matrix)
• Superpixel Compactness
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GRAPH-BASED LEARNING FOR SUPERPIXEL IMAGES

SANITY CHECKING – MNIST
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GRAPH-BASED LEARNING FOR SUPERPIXEL IMAGES

CURRENT ARCHITECTURE

• No color information, so we use only:

• Average brightness
• Average (cartesian) position

• 3 1-headed GAT layers
• Sum pooling
• An MLP with 2 layers
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GRAPH-BASED LEARNING FOR SUPERPIXEL IMAGES

PRELIMINARY RESULTS
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GRAPH-BASED LEARNING FOR SUPERPIXEL IMAGES

PROFILING

Profiling results give us out that performing online segmentation to
transform to graphs is too slow:

Code Time Relative to Batch
Gen Graphs from Images 55.91%
Batching Graphs 18.59%
To Pytorch/GPU 23.21%
GAT 1.03%
Metrics 0.05%
Backprop 1.21%
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GRAPH-BASED LEARNING FOR SUPERPIXEL IMAGES

PLANNED IMPROVEMENTS/NEXT STEPS

• Generate graphs offline

• More attention heads
• Denser graphs
• Data Aug: Segmentations with different number of pixels
• Other datasets: Pascal VOC, CoCo (segmentation), Transfer to

Spherical Images
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GRAPH-BASED LEARNING FOR SUPERPIXEL IMAGES

SUGGESTIONS?

Suggestions?
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Learning on Graphs for Continuous
Domains
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LEARNING ON GRAPHS FOR CONTINUOUS DOMAINS

MAIN IDEAS

• Neural Networks can be put as residual blocks

• Residual blocks can be interpreted as discrete derivatives
• We can integrate residual blocks to give them continuity
• Why not do this with graphs?
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LEARNING ON GRAPHS FOR CONTINUOUS DOMAINS

UNSUPERVISED NODE CLASSIFICATION

• First tests done with traditional GCN [Kipf and Welling, 2017]

• Performance almost the same as discrete residual models
• Tests performed on traditional node classification datasets:

• Citeseer
• Cora
• Pubmed
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RESULTS
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LEARNING ON GRAPHS FOR CONTINUOUS DOMAINS

PHYSICS

Working under way to extend this to physics models such as n-body
orbits, ball collisions and string/spring physics
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SUGGESTIONS?

Suggestions?
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SIDE PROJECTS
MEASURING ACADEMIC ENGAGEMENT WITH ETHICS IN THE AREA
OF AI

MAIN IDEAS

• Computing ethics keywords from arxiv paper abstracts from
Human-AI field

• Checking growth in each category
• Planning to have a rough draft by HAI
• Suggestions?
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SIDE PROJECTS
SECOND LANGUAGE ACQUISITION MODELLING WITH
ATTENTIONAL MODELS AND HALF-LIFE REGRESSION

MAIN IDEAS

• Using HLR and attention to predict errors learners may do

• HLR will model forgetting
• Attention will model language structure
• Suggestions?
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• Differential Gradient (TBD – Planning to present it at Khipu)
• BRHIM (Waiting for data)
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