
Neural Symbolic Systems on Graphs

Pedro H.C. Avelar Luis C. Lamb

Universidade Federal do Rio Grande do Sul

September 2019



Deep Learning on Graphs

Selsam et al’s NeuroSAT

Our Works



Inductive Bias

Neural Networks have been worked upon to provide end-to-end
differentiable means to work with several data structures.

I Fully Connected NNs (MLPs) doesn’t force a structure on the
input and thus must learn both the transformation as well as
the structure of the problem

I Recursive NNs work by iterating over discrete sequences of
items

I Relational Networks [Santoro et al., 2017] and set2set
[Vinyals et al., 2016] work with sets

I [Grefenstette et al., 2015] provided neural computers with
stack and queue inspired architectures.

I What about Graphs?



Inductive Bias

Neural Networks have been worked upon to provide end-to-end
differentiable means to work with several data structures.

I Fully Connected NNs (MLPs) doesn’t force a structure on the
input and thus must learn both the transformation as well as
the structure of the problem

I Recursive NNs work by iterating over discrete sequences of
items

I Relational Networks [Santoro et al., 2017] and set2set
[Vinyals et al., 2016] work with sets

I [Grefenstette et al., 2015] provided neural computers with
stack and queue inspired architectures.

I What about Graphs?



Inductive Bias

Neural Networks have been worked upon to provide end-to-end
differentiable means to work with several data structures.

I Fully Connected NNs (MLPs) doesn’t force a structure on the
input and thus must learn both the transformation as well as
the structure of the problem

I Recursive NNs work by iterating over discrete sequences of
items

I Relational Networks [Santoro et al., 2017] and set2set
[Vinyals et al., 2016] work with sets

I [Grefenstette et al., 2015] provided neural computers with
stack and queue inspired architectures.

I What about Graphs?



Inductive Bias

Neural Networks have been worked upon to provide end-to-end
differentiable means to work with several data structures.

I Fully Connected NNs (MLPs) doesn’t force a structure on the
input and thus must learn both the transformation as well as
the structure of the problem

I Recursive NNs work by iterating over discrete sequences of
items

I Relational Networks [Santoro et al., 2017] and set2set
[Vinyals et al., 2016] work with sets

I [Grefenstette et al., 2015] provided neural computers with
stack and queue inspired architectures.

I What about Graphs?



Inductive Bias

Neural Networks have been worked upon to provide end-to-end
differentiable means to work with several data structures.

I Fully Connected NNs (MLPs) doesn’t force a structure on the
input and thus must learn both the transformation as well as
the structure of the problem

I Recursive NNs work by iterating over discrete sequences of
items

I Relational Networks [Santoro et al., 2017] and set2set
[Vinyals et al., 2016] work with sets

I [Grefenstette et al., 2015] provided neural computers with
stack and queue inspired architectures.

I What about Graphs?



Inductive Bias

Neural Networks have been worked upon to provide end-to-end
differentiable means to work with several data structures.

I Fully Connected NNs (MLPs) doesn’t force a structure on the
input and thus must learn both the transformation as well as
the structure of the problem

I Recursive NNs work by iterating over discrete sequences of
items

I Relational Networks [Santoro et al., 2017] and set2set
[Vinyals et al., 2016] work with sets

I [Grefenstette et al., 2015] provided neural computers with
stack and queue inspired architectures.

I What about Graphs?



Graph Neural Networks

[Sperduti and Starita, 1997] gave one of the first suggestions on
using neural networks with graph-structure data

, but
[Gori et al., 2005] constructed a model that is much akin to
today’s architecturesand in [Scarselli et al., 2009] they reaffirmed
the model in its full potential.



Graph Neural Networks

[Sperduti and Starita, 1997] gave one of the first suggestions on
using neural networks with graph-structure data, but
[Gori et al., 2005] constructed a model that is much akin to
today’s architectures

and in [Scarselli et al., 2009] they reaffirmed
the model in its full potential.



Graph Neural Networks

[Sperduti and Starita, 1997] gave one of the first suggestions on
using neural networks with graph-structure data, but
[Gori et al., 2005] constructed a model that is much akin to
today’s architecturesand in [Scarselli et al., 2009] they reaffirmed
the model in its full potential.



The Graph Neural Network Model

Main Ideas:

1. Build the network of neural modules according to the input
graph structure

2. Propagate information until it converges

3. Readout desired information through another neural module

4. [Scarselli et al., 2009] One could adapt this to work with
different “kinds” of nodes (i.e. the edge and graph nodes in
[Battaglia et al., 2018])



The Graph Neural Network Model

Main Ideas:

1. Build the network of neural modules according to the input
graph structure

2. Propagate information until it converges

3. Readout desired information through another neural module

4. [Scarselli et al., 2009] One could adapt this to work with
different “kinds” of nodes (i.e. the edge and graph nodes in
[Battaglia et al., 2018])



The Graph Neural Network Model

Main Ideas:

1. Build the network of neural modules according to the input
graph structure

2. Propagate information until it converges

3. Readout desired information through another neural module

4. [Scarselli et al., 2009] One could adapt this to work with
different “kinds” of nodes (i.e. the edge and graph nodes in
[Battaglia et al., 2018])



The Graph Neural Network Model

Main Ideas:

1. Build the network of neural modules according to the input
graph structure

2. Propagate information until it converges

3. Readout desired information through another neural module

4. [Scarselli et al., 2009] One could adapt this to work with
different “kinds” of nodes (i.e. the edge and graph nodes in
[Battaglia et al., 2018])



The Graph Neural Network Model

Main Ideas:

1. Build the network of neural modules according to the input
graph structure

2. Propagate information until it converges

3. Readout desired information through another neural module

4. [Scarselli et al., 2009] One could adapt this to work with
different “kinds” of nodes (i.e. the edge and graph nodes in
[Battaglia et al., 2018])



The Graph Neural Network Model: A Graph

n1 n2

n3

n4



The Graph Neural Network Model: Neural Modules
corresponding to each node

n1 n2

n3

n4

f f

f

f



The Graph Neural Network Model: Neural Modules
corresponding to each node

n1 n2

n3

n4

f f

f

f



The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: Unrolling in time

n1

n2

n3

n4

h01

h02

h03

h04

f

f

f

f

h11

h12

h13

h14

f

f

f

f

. . .

. . .

. . .

. . .

hT1

hT2

hT3

hT4



The Graph Neural Network Model: Recurrent connections

n1

n2

n3

n4

h01

h02

h03

h04

f

f

f

f

h11

h12

h13

h14

f

f

f

f

. . .

. . .

. . .

. . .

hT1

hT2

hT3

hT4



Mathematical formalisation

With sum-aggregation, it is easy to organise the propagation as
matrix multiplication. Given an adjacency matrix M with shape
(n, n), the learned function f , and the current node “state” ht

with shape (n, d), we have:

ht+1 = f (M× ht)

Which translates, on a node-to-node basis as:

ht+1
n = f (

∑
j∈N (n)

htj )

With N (n) being the neighbourhood of node n.



Message-Passing Neural Networks

Same principles as [Gori et al., 2005, Scarselli et al., 2009]:

I A separate “messaging” function added between
communicating nodes.

I “Messages” propagated for a given number of iterations
instead



Message-Passing Neural Networks

Same principles as [Gori et al., 2005, Scarselli et al., 2009]:

I A separate “messaging” function added between
communicating nodes.

I “Messages” propagated for a given number of iterations
instead



Message-Passing Neural Networks

Same principles as [Gori et al., 2005, Scarselli et al., 2009]:

I A separate “messaging” function added between
communicating nodes.

I “Messages” propagated for a given number of iterations
instead



Message-Passing Neural Networks

n1 n2

n3

n4

f f

f

f

m
m m

m



Message-Passing Neural Networks

n1

n2

n3

n4

ht1

ht2

ht3

ht4

m

m

m

m

m

m

m

m

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



MPNN “blocks”

We’ll use the following graphical representation for simplifying the
MPNN blocks, ellipses are state tensors, rectangles are learned
functions, diamonds represent matrix multiplication (or any other
type of neighbourhood aggregation), circles (not present) are
pointwise operations, and if two arrows join at a point their tensors
are most likely concatenated for every tuple of node:

ht m Mh→h f ht+1



Details Left Out

I Messaging functions often take more than just the source’s
embedding.

I Neighbourhood aggregation can be made in many ways:
I Sum-aggregation [Gori et al., 2005, Scarselli et al., 2009,

Gilmer et al., 2017, Selsam et al., 2018, Xu et al., 2019]
I Average-aggregation [Kipf and Welling, 2017]
I Attentional sum-aggregation [Velickovic et al., 2018]
I Product-aggregation
I Or any other order-invariant function

I Readout functions can be really diverse, using only specific
nodes, all nodes of a kind/type, pairs of nodes, etc...

I Batching of different input graphs (done as a block-diagonal
matrix)



Graph Convolutions

Independently, generalisations of convolutions to graph-domains,
such as [Kipf and Welling, 2017], led to an architecture similar to
[Scarselli et al., 2009], only with no recurrent connection, untied
weights, and average-aggregation instead of sum-aggregation.



Graph Networks

[Battaglia et al., 2018] suggests the generalisation of the concept
of graph neural networks to models other than neural networks,
builds upon this idea of inductive bias and argues for three specific
kinds/types of nodes: Vertex, Edge and Graph-level nodes.



Recap

We can:

I Assemble neural modules in the configuration of the input
graphs and propagate information through neighbours.

I Work with different “kinds”/types of nodes by training
different “update” and “message” functions, working on
different sets of embeddings, and different adjacency matrices
(we’ll see examples soon).

I Read out the embeddings at the last layer and use them to
provide an answer to the problem at hand.



NeuroSAT: CNF formulas as Hypergraphs

A SAT formula can be seen as a hypergraph/bipartite graph
between literals and clauses [Selsam et al., 2018]

(x1∨¬x2∨x3 ) ∧ (¬x1∨x2 )

x1 ¬x1 x2 ¬x2 x3 ¬x3

c1 c2



NeuroSAT: CNF formulas as Hypergraphs

A SAT formula can be seen as a hypergraph/bipartite graph
between literals and clauses [Selsam et al., 2018]

(x1∨¬x2∨x3 ) ∧ (¬x1∨x2 )

x1 ¬x1 x2 ¬x2 x3 ¬x3

c1 c2



NeuroSAT: CNF formulas as Hypergraphs

A SAT formula can be seen as a hypergraph/bipartite graph
between literals and clauses [Selsam et al., 2018]

(x1∨¬x2∨x3 ) ∧ (¬x1∨x2 )

x1 ¬x1 x2 ¬x2 x3 ¬x3

c1 c2



The NeuroSAT Model

cinit . . .

linit . . . lt

ct ml→c

mc→l

Ml→c

Mᵀ
l→c

Ml→¬l

fl

fc

lt+1

ct+1

. . .

. . .

fvote



Summary

I Two types of nodes: literals and clauses.

I Literals communicate with clauses they are in and with their
negated counterparts

I Clauses communicate with literals they contain

I Same (learned) initial embedding for all literals and another
for all clauses.

I Readout function as each literal voting on satisfiability, final
answer by averaging



Major Outcomes

The 3 most important things in [Selsam et al., 2018]’s experiments
were, in our opinion:

I Provided a way to build pairs of almost equal problems with
radically different answers

I An algorithm-like neural message-passing procedure that has
monotonically non-decreasing performance over time.

I A way to extract meaningful information to the point of
reconstructing solutions to the problems



Where We Came From

The three achievements cited above came as a guidance for our
experiments. All our models are direct applications of the MPNN
in Selsam et al’s NeuroSAT architecture, with changes made
mostly at the beginning and end of the pipeline and thus we’ll
leave the details out and give only the overview of these models.



Centrality

Simple application of a GNN/MPNN based on previous work at
our lab. For the readout we arrange every possible pair of node
embeddings and produce a ranking by training a MLP module
serve as a “greater than” comparison. That is: rc(ha,hb) = 1 if
c(na) > c(nb) else 0, with rc being the learned comparison module
for centrality c , hi being the embedding for node i and c(ni ) the
centrality value of that node under centrality measure c .



Centrality – The Model

vinit . . . vt

mvtgt

mvsrc

Mᵀ
v→v

Mv→v

fv vt+1 . . . fcmp



Centrality – Summary

I Only nodes.

I Nodes communicate with neighbours

I Same (learned) initial embedding for all nodes.

I Readout function as each pair of nodes being compared based
on their centrality values



Travelling Salesman Problem

Exactly the same idea as NeuroSAT, only the voting occurs in the
edges and the initial embedding is initialised through a learned
function that takes as inputs an edge’s cost and the maximum
route cost. Couldn’t find a way to interpret the embeddings as in
NeuroSAT.



TSP – The Model

ew

rc einit . . .

vinit . . . vt

et mv→e

me→v

Mv→e

Mᵀ
v→e fv

fe

vt+1

et+1 . . .

. . .

fvote



TSP – Summary

I Nodes and Edges.

I Nodes communicate with edges and edges with nodes

I Same (learned) initial embedding for all nodes.

I Edges initialised according to a (learned) function on the
edge’s cost and the maximum path lenght.

I Readout function as each edge voting on satisfiability, final
answer by averaging values

I Trained on solving the same problem with a small deviation
above/below the optimum.



Graph Colouring

Exactly the same idea as NeuroSAT, only that the initial
embeddings for the colours are random. Results interpretable in
the sense of conflicts in the clusterings.



GCP – The Model

cinit . . .

vinit . . . vt

ct mv→c

mc→v

mv→v

Mv→c

Mᵀ
v→c

Mv→v

fv

fc

vt+1

ct+1

. . .

. . .

fvote



GCP – Summary

I Nodes and Colours.

I Nodes communicate between themselves and with colours,
colours communicate with nodes

I Same (learned) initial embedding for all nodes.

I Randomly initialised colour embeddings.

I Readout function as each vertex (node) voting on
satisfiability, final answer by averaging values

I Trained on solving the same problem with the chromatic
number and one below the chromatic number.



Link Prediction

Currently working on a model for Link Prediction, extending the
work of [McCallum et al., 2017] with MPNNs, achieving good
results so far.



Key Ideas from Experience

I Work in the domain of the problem: Node-centralities should
focus on node embeddings, edge-centric problems such as
TSP/Link prediction should focus on edge embeddings, if you
need k different “graph-level” embeddings for k coloring then
have them.

I Too many propagation steps can make it harder to learn.

I Training the loss on each message-passing iteration helps
solutions with monotonically increasing performance over
more iterations (as in [Palm et al., 2018]).

I If working on a symbolic problem, using instances that are
very similar in structure but have opposite answers also help
training.

I The fun part is less about the GNN/MPNN model itself and
more about how you engineer the pipeline before and after the
model.



Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez,
A., Zambaldi, V. F., Malinowski, M., Tacchetti, A., Raposo,
D., Santoro, A., Faulkner, R., Gülçehre, Ç., Song, F., Ballard,
A. J., Gilmer, J., Dahl, G. E., Vaswani, A., Allen, K., Nash, C.,
Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P.,
Botvinick, M., Vinyals, O., Li, Y., and Pascanu, R. (2018).
Relational inductive biases, deep learning, and graph networks.
CoRR, abs/1806.01261.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. (2017).
Neural message passing for quantum chemistry.
In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 1263–1272.
PMLR.

Gori, M., Monfardini, G., and Scarselli, F. (2005).
A new model for learning in graph domains.



In Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005., volume 2, pages 729–734. IEEE.

Grefenstette, E., Hermann, K. M., Suleyman, M., and
Blunsom, P. (2015).
Learning to transduce with unbounded memory.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and
Garnett, R., editors, Advances in Neural Information
Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 1828–1836.

Kipf, T. N. and Welling, M. (2017).
Semi-supervised classification with graph convolutional
networks.
In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net.

McCallum, A., Neelakantan, A., Das, R., and Belanger, D.
(2017).



Chains of reasoning over entities, relations, and text using
recurrent neural networks.
In Lapata, M., Blunsom, P., and Koller, A., editors,
Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics, EACL 2017,
Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers,
pages 132–141. Association for Computational Linguistics.

Palm, R. B., Paquet, U., and Winther, O. (2018).
Recurrent relational networks.
In Bengio, S., Wallach, H. M., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural
Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada., pages 3372–3382.

Santoro, A., Raposo, D., Barrett, D. G. T., Malinowski, M.,
Pascanu, R., Battaglia, P. W., and Lillicrap, T. (2017).
A simple neural network module for relational reasoning.
In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M.,
Fergus, R., Vishwanathan, S. V. N., and Garnett, R., editors,



Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pages
4967–4976.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. (2009).
The graph neural network model.
IEEE Transactions on Neural Networks, 20(1):61–80.

Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., and
Dill, D. L. (2018).
Learning a SAT solver from single-bit supervision.
CoRR, abs/1802.03685.

Sperduti, A. and Starita, A. (1997).
Supervised neural networks for the classification of structures.
IEEE Trans. Neural Networks, 8(3):714–735.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P.,
and Bengio, Y. (2018).
Graph attention networks.



In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Vinyals, O., Bengio, S., and Kudlur, M. (2016).
Order matters: Sequence to sequence for sets.
In Bengio, Y. and LeCun, Y., editors, 4th International
Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019).
How powerful are graph neural networks?
In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, United States, May 6 - May 9,
2019, Conference Track Proceedings. OpenReview.net.


	Deep Learning on Graphs
	Selsam et al's NeuroSAT
	Our Works

