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Inductive Bias

Neural Networks have been worked upon to provide end-to-end
differentiable means to work with several data structures.

I Fully Connected NNs (MLPs) doesn’t force a structure on the
input and thus must learn both the transformation as well as
the structure of the problem

I Recursive NNs work by iterating over discrete sequences of
items

I Relational Networks [Santoro et al., 2017] and set2set
[Vinyals et al., 2016] work with sets

I [Grefenstette et al., 2015] provided neural computers with
stack and queue inspired architectures.

I What about Graphs?
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Graph Neural Networks

[Sperduti and Starita, 1997] gave one of the first suggestions on
using neural networks with graph-structure data

, but
[Gori et al., 2005] constructed a model that is much akin to
today’s architecturesand in [Scarselli et al., 2009] they reaffirmed
the model in its full potential.
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The Graph Neural Network Model

Main Ideas:

1. Build the network of neural modules according to the input
graph structure

2. Propagate information until it converges

3. Readout desired information through another neural module

4. [Scarselli et al., 2009] One could adapt this to work with
different “kinds” of nodes (i.e. the edge and graph nodes in
[Battaglia et al., 2018])
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The Graph Neural Network Model: A Graph
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The Graph Neural Network Model: Neural Modules
corresponding to each node
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The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: One propagation layer

n1

n2

n3

n4

ht1

ht2

ht3

ht4

+

+

+

+

f

f

f

f

ht+1
1

ht+1
2

ht+1
3

ht+1
4



The Graph Neural Network Model: Unrolling in time
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The Graph Neural Network Model: Recurrent connections
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Mathematical formalisation

With sum-aggregation, it is easy to organise the propagation as
matrix multiplication. Given an adjacency matrix M with shape
(n, n), the learned function f , and the current node “state” ht

with shape (n, d), we have:

ht+1 = f (M× ht)

Which translates, on a node-to-node basis as:

ht+1
n = f (

∑
j∈N (n)

htj )

With N (n) being the neighbourhood of node n.



Message-Passing Neural Networks

Same principles as [Gori et al., 2005, Scarselli et al., 2009]:

I A separate “messaging” function added between
communicating nodes.

I “Messages” propagated for a given number of iterations
instead
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Message-Passing Neural Networks
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MPNN “blocks”

We’ll use the following graphical representation for simplifying the
MPNN blocks, ellipses are state tensors, rectangles are learned
functions, diamonds represent matrix multiplication (or any other
type of neighbourhood aggregation), circles (not present) are
pointwise operations, and if two arrows join at a point their tensors
are most likely concatenated for every tuple of node:

ht m Mh→h f ht+1



Details Left Out

I Messaging functions often take more than just the source’s
embedding.

I Neighbourhood aggregation can be made in many ways:
I Sum-aggregation [Gori et al., 2005, Scarselli et al., 2009,

Gilmer et al., 2017, Selsam et al., 2018, Xu et al., 2019]
I Average-aggregation [Kipf and Welling, 2017]
I Attentional sum-aggregation [Velickovic et al., 2018]
I Product-aggregation
I Or any other order-invariant function

I Readout functions can be really diverse, using only specific
nodes, all nodes of a kind/type, pairs of nodes, etc...

I Batching of different input graphs (done as a block-diagonal
matrix)



Graph Convolutions

Independently, generalisations of convolutions to graph-domains,
such as [Kipf and Welling, 2017], led to an architecture similar to
[Scarselli et al., 2009], only with no recurrent connection, untied
weights, and average-aggregation instead of sum-aggregation.



Graph Networks

[Battaglia et al., 2018] suggests the generalisation of the concept
of graph neural networks to models other than neural networks,
builds upon this idea of inductive bias and argues for three specific
kinds/types of nodes: Vertex, Edge and Graph-level nodes.



Recap

We can:

I Assemble neural modules in the configuration of the input
graphs and propagate information through neighbours.

I Work with different “kinds”/types of nodes by training
different “update” and “message” functions, working on
different sets of embeddings, and different adjacency matrices
(we’ll see examples soon).

I Read out the embeddings at the last layer and use them to
provide an answer to the problem at hand.



NeuroSAT: CNF formulas as Hypergraphs

A SAT formula can be seen as a hypergraph/bipartite graph
between literals and clauses [Selsam et al., 2018]

(x1∨¬x2∨x3 ) ∧ (¬x1∨x2 )

x1 ¬x1 x2 ¬x2 x3 ¬x3

c1 c2
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The NeuroSAT Model
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Summary

I Two types of nodes: literals and clauses.

I Literals communicate with clauses they are in and with their
negated counterparts

I Clauses communicate with literals they contain

I Same (learned) initial embedding for all literals and another
for all clauses.

I Readout function as each literal voting on satisfiability, final
answer by averaging



Major Outcomes

The 3 most important things in [Selsam et al., 2018]’s experiments
were, in our opinion:

I Provided a way to build pairs of almost equal problems with
radically different answers

I An algorithm-like neural message-passing procedure that has
monotonically non-decreasing performance over time.

I A way to extract meaningful information to the point of
reconstructing solutions to the problems



Where We Came From

The three achievements cited above came as a guidance for our
experiments. All our models are direct applications of the MPNN
in Selsam et al’s NeuroSAT architecture, with changes made
mostly at the beginning and end of the pipeline and thus we’ll
leave the details out and give only the overview of these models.



Centrality

Simple application of a GNN/MPNN based on previous work at
our lab. For the readout we arrange every possible pair of node
embeddings and produce a ranking by training a MLP module
serve as a “greater than” comparison. That is: rc(ha,hb) = 1 if
c(na) > c(nb) else 0, with rc being the learned comparison module
for centrality c , hi being the embedding for node i and c(ni ) the
centrality value of that node under centrality measure c .



Centrality – The Model
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Centrality – Summary

I Only nodes.

I Nodes communicate with neighbours

I Same (learned) initial embedding for all nodes.

I Readout function as each pair of nodes being compared based
on their centrality values



Travelling Salesman Problem

Exactly the same idea as NeuroSAT, only the voting occurs in the
edges and the initial embedding is initialised through a learned
function that takes as inputs an edge’s cost and the maximum
route cost. Couldn’t find a way to interpret the embeddings as in
NeuroSAT.



TSP – The Model
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TSP – Summary

I Nodes and Edges.

I Nodes communicate with edges and edges with nodes

I Same (learned) initial embedding for all nodes.

I Edges initialised according to a (learned) function on the
edge’s cost and the maximum path lenght.

I Readout function as each edge voting on satisfiability, final
answer by averaging values

I Trained on solving the same problem with a small deviation
above/below the optimum.



Graph Colouring

Exactly the same idea as NeuroSAT, only that the initial
embeddings for the colours are random. Results interpretable in
the sense of conflicts in the clusterings.



GCP – The Model
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GCP – Summary

I Nodes and Colours.

I Nodes communicate between themselves and with colours,
colours communicate with nodes

I Same (learned) initial embedding for all nodes.

I Randomly initialised colour embeddings.

I Readout function as each vertex (node) voting on
satisfiability, final answer by averaging values

I Trained on solving the same problem with the chromatic
number and one below the chromatic number.



Link Prediction

Currently working on a model for Link Prediction, extending the
work of [McCallum et al., 2017] with MPNNs, achieving good
results so far.



Key Ideas from Experience

I Work in the domain of the problem: Node-centralities should
focus on node embeddings, edge-centric problems such as
TSP/Link prediction should focus on edge embeddings, if you
need k different “graph-level” embeddings for k coloring then
have them.

I Too many propagation steps can make it harder to learn.

I Training the loss on each message-passing iteration helps
solutions with monotonically increasing performance over
more iterations (as in [Palm et al., 2018]).

I If working on a symbolic problem, using instances that are
very similar in structure but have opposite answers also help
training.

I The fun part is less about the GNN/MPNN model itself and
more about how you engineer the pipeline before and after the
model.
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