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Interpretability

Inspired by [9] we applied PCA on the embeddings at the last 
layer of the GNN block to interpret our results, leading to mixed 
results. Sometimes the model would behave in an interpretable 
fashion, with its PCA showing a high visual correlation with the 
predicted centralities an sometimes it showed erratic behaviour. But 
in the cases where the PCA behaved well the model seemed to be 
storing information related to the log of the predicted centralities 
inside its embeddings.

Discussion

This work presents, to the best of our knowledge, the first 
application of Graph Neural Networks to multiple centrality 
measures and the proposal of a comparison framework for 
processing node embeddings. We yield an effective model and 
provide ways to have such a model work with various centralities at 
once, in a more memory-efficient way than having a different model 
for every centrality – with minimal loss in its performance. 

Although our model is presented here with four sample 
centralities, some of which are easier to compute precisely rather 
than approximating with our method, we believe that the joint 
prediction of multiple centralities is still useful, since the time 
complexity of our model, which is dependant mostly on matrix 
multiplications, still remains polynomial even if one increases the 
amount of centralities being predicted.
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Research Questions
● Can  GNNs benefit from Multitask Learning?
● Can GNNs approximate centrality measures solely from the 

network structure?

Network Centrality Measures

In general, node-level centralities attempt to summarise a node's 
contribution to the network cohesion. Several centralities have been 
proposed and many models and  interpretations have been 
suggested, namely: autonomy, control, risk, exposure, influence, 
etc. Despite their myriad of applications and interpretations, in order 
to calculate some of these centralities one may face both  high time 
and space complexity, thus making it costly to compute them on 
large networks. Although some studies pointed out a high degree of 
correlation between some of the most common centralities [6], it is 
also stated that these correlations are attached to the underlying 
network structure and thus may vary across different network 
distributions [8]. Therefore, techniques to allow faster centrality 
computation are topics of active research [1].

Here, however, we are not concerned as much with the time 
complexity of computing the centrality measure per se, but with 
whether a neural network can infer a node's centrality solely from 
the network structure – that is, without any numeric information 
about the node, its neighbourhood, or the network itself – even if the 
complexity of the methods presented here is similar to that of matrix 
operations, as the underlying procedures are based on these, and is 
polynomial with the size of the input. With this in mind, we selected 
four well-known node centralities to investigate in our study: degree 
– which simply calculates to how many neighbours a node is 
connected; betweenness – which calculates the number of shortest 
paths which cross by the given node, indicating that a node is more 
important to the graph's cohesion; closeness – which is a distance-
based centrality measuring the average geodesic distance between 
a given node and all other reachable nodes; eigenvector – which 
uses the largest eigenvalue of the adjacency matrix to compute its 
eigenvector and assigns to each node a score based on the scores 
of its neighbours, being usually computed via a power iteration 
method without convergence guarantees.

Approximating Centralities with ANNs

[1,2,3,4,5] all use neural networks to estimate centrality 
measures. However, in [1,2,3] they use a priori knowledge of other 
centralities to approximate a different one, on [4] they also produce 
a ranking of the centrality measures, but do so using the degree and 
eigenvector centralities as input, and in [5] local features such as 
number of vertices in a network, number of edges in a network, 
degree and the sum of the degrees of all of the vertex's neighbours 
are used. These contributions differ from ours in that we feed our 
neural network solely with the network structure – that is, they use a 
simple MLP which receives numeric information about a specific 
node and outputs an approximation of one desired centrality 
measure, while our builds a message-passing procedure with only 
the network structure and no numeric information whatsoever.  [7] 
also uses GNNs to compute rankings for the PageRank centrality 
measure, but does for a single graph, and does not focus on other 
centralities nor analyses the transfer between centralities.

Approximating vs Ranking

Most of the cited previous work focus on the rankings produced 
by their estimators, instead of the approximation of the centrality 
values per se. In this work we build models that approximate the 
normalised centralities (AN), those that approximate the normalised 
centralities but have the normalisation done outside the ANN (AM), 
and those that produce rankings natively by comparing the 
embeddings of two different nodes with a learned comparison 
function (RN), effectively producing a fuzzy comparison matrix as 
exemplified below.

Training and Testing

Instead of optimising our target function in the same network we 
will test it, as some previous work do, we try make our network learn 
to model centrality measures on arbitrary distributions by making 
use of the random network models available in the literature for 
training/testing and using real world networks exclusively for testing.

We train our GNN on a synthetic dataset composed of graphs 
sampled from the Watts-Strogatz small-world, a power-law tree, the 
Holme-Kim and the Erdós-Renyi models, with examples shown of 
these distributions shown below. We test our models on newly 
generated graphs from these same distributions, with the same 
amount of nodes as in the raining dataset as well as with more 
nodes than during training.

To evaluate how our model extends its predictions to different 
graphs distributions we test in on both synthetic networks from other 
distributions (such as shell graphs, and graphs sampled from the 
Barabási-Albert model) as well as real world networks as varied as 
power-grid, economic, biological, collaboration and social networks.

Experimental Results
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