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e Machine Learning subarea:

e Structures of linear transformations and nonlinear applications.
e Learning internal representations of data.
e “Grown" from Artificial Neural Networks.

e Success generally attributed to the heightened parallel processing
capacity with GPUs and due to the high data availability.

e Becoming ubiquitous in our daily lives, with manifold applications on
diverse areas.
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Figure: Recent success which uses deep learning for image processing — Image
generation with the StyleGAN model. Source: KARRAS; LAINE; AILA (2018)
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RECENT SUCCESSES - AUDIO PROCESSING NETWORKS

Figure: Recent success which uses deep learning for audio processing — Sound
localisation with the PixelPlayer model. Source: ZHAO et al. (2018)
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Figure: Recent success which uses deep learning for text processing — OpenAl’s
GPT-2 model. Source: OpenAl (RADFORD et al., 2019)
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RECENT SUCCESSES - ROBOTICS NETWORKS

Figure: Recent success which uses deep learning for robotics. Source:
OpenAl(OPENAI et al., 2018)
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Figure: Recent sucesss that uses deep learning for a relational problem — In this
case, playing the chinese boardgame Go. Source: Nature (SILVER et al., 2016)
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COMPUTERS NETWORKS

Figure: Recent sucesss that uses deep learning for a relational problem — In this
case, the DNC model performs well in question answering and graph processing
tasks. Source: Deepmind (GRAVES et al., 2016)
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VISUAL QUESTION ANSWERING NETWORKS

Figure: Recent sucessses that uses deep learning for a relational problem — In this
case, answering relational questions about a synthetic image. Source:
SANTORO et al. (2017)
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Iteration —

Figure: Recent sucesss that uses deep learning for a relational problem — In this
case, solving SAT instances. Source: SELSAM et al. (2018)
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NETWORK SCIENCE NETWORKS

Figure: A partial map of the Internet based in 2005, made by opte.org: The
relational structures that support our modern societies have been growing larger
and more interconnected by the day. Source: Wikimedia Commons

12/85
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Figure: The connections of the 34 members of Zachary's Karate Club (WAYNE,
1977), a small social network. Here it is easy to see the equivalence between
networks and graphs. Source: Author, data from (WAYNE, 1977) plotted using
the Networkx Python package (HAGBERG; SWART; CHULT, 2008)
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SCALE-FREE PROPERTY OF REAL NETWORKS  networks

Figure: Two networks consisting of the same vertices, but with different degree
distributions, exemplifying the Scale-Free property. Source: BARABASI et al.
(2016)
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CENTRALITY MEASURES NETWORKS

e Defines how “important” an entity is
e Many definitions of importance

e Uses in (social) network analysis
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Figure: Zachary's Karate Club with nodes sized by degree. Source: Author, data
from (WAYNE, 1977) plotted using the Networkx Python package (HAGBERG;
SWART; CHULT, 2008)
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BETWEENNESS NETWORKS

Figure: Zachary's Karate Club with nodes sized by betweenness. Source: Author,
data from (WAYNE, 1977) plotted using the Networkx Python package
(HAGBERG; SWART; CHULT, 2008)
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Figure: Zachary's Karate Club with nodes sized by closeness. Source: Author,

data from (WAYNE, 1977) plotted using the Networkx Python package
(HAGBERG; SWART; CHULT, 2008)
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EIGENVECTOR NETWORKS

Figure: Zachary's Karate Club with nodes sized by eigenvector. Source: Author,
data from (WAYNE, 1977) plotted using the Networkx Python package
(HAGBERG; SWART; CHULT, 2008)
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Figure: The typical architecture of a CNN. Source: Wikimedia Commons
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LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
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CONVOLUTIONAL NEURAL NETWORKS NETWORKS

oo

Figure: The application of a 1-dimensional convolutional kernel on a discrete
1-dimensional space. [Blue circles are inputs, [red| circles are outputs and
green backgrounds are to represent the whole neural network block. Source:
Author, based on (OLAH, 2014)
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RECURRENT NEURAL NETWORKS NETWORKS

Figure: Deep Speech RNN architecture. Source: HANNUN et al. (2014)
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RECURRENT NEURAL NETWORKS NETWORKS

A A A

Figure: An unrolled recursive neural network. Yellow squares are neural network

layers, | blue] circles are inputs, [red| circles are outputs and |green backgrounds
are to represent the whole neural network block. Source: Author, based on
(OLAH, 2015)
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Figure: There is weight reuse across convolutional (middle) and recurrent (right)
layers, but not in fully connected (left) layers. Source: BATTAGLIA et al. (2018)

Sharing in space
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e RNNs work on sequences
e CNNs work on discrete spaces
e What about graphs?
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Figure: The representation of the Graph Neural Network Model, with the vertex
being updated using the information on its neighbourhood Source: SCARSELLI
et al. (2009)

27/85




LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL

GRAPH NEURAL NETWORKS

GRAPH NETWORKS NETWORKS

Attributes

o > o> o
OFEE = u
Vo, IO

Figure: The representation of the Graph Network Model. Source: BATTAGLIA
et al. (2018)
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AND HYPERGRAPHS? NETWORKS

e BATTAGLIA et al. (2018) leaves no space for representing
hypergraphs

e The GNN model in SCARSELLI et al. (2009) is more general, and
allows such operations

e Reformalisation of the GNN model to generalise the concept of a
vertex to a vertex's type.
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Figure: Pictorial representation of a Typed Graph Network from the perspective
of a vertex v. Source: Author
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N K N

1. procedure TGN(G=(V = Vi,E= U &), ZT=U Vi(O))
i=1 k=1 i=1

2: fort =1...tmaes do

3: fori=1...N do

4: Let K; « {k | Vk, 7 = (s,1)}

5: forall v, €V, do

6: for all k€ K; do

7 B, A (Vs V) | Yoa € Ve, (va, v0) € Ex}

8: al — ax(@y)

9: end for

10: Py = pi{@)) | vk € Ki})

11: ViEZ; — %(Vi(t)ﬁl(-,tz);)

12: end for

13: end for

14: end for

15:  return {V;(mes) | { =1 N}

16: end procedure
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TYPED GRAPH NEURAL NETWORKS NETWORKS

K ={k | Vi,m, = (s,4)} (1)
B, = (Vs D) | Yoa € Vi, (vay ) € Ex) 2)
al =a@)) | 1<k<K (3)
Pftg—ﬂz( (t)b) V1<i< N,u €V (4)

—1) —
Vil =1(Vig, 21" (5)
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e GRANDO; LAMB (2015) and GRANDO; LAMB (2016) uses neural
networks to estimate centrality measures

e Uses a priori knowledge of other centralities to approximate a
different one.

e GRANDO; LAMB (2018) also produces a ranking of the centrality
measures, but again do so using the degree and eigenvector
centralities as input.
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RELATED WORK

KUMAR; MEHROTRA; MOHAN NETWORKS

e KUMAR; MEHROTRA; MOHAN (2015) uses local and global
features:
e number of vertices in a network
e number of edges in a network
e vertex degree
e sum of the degrees on vertex's neighbourhood
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e SCARSELLI et al. (2005) uses GNNs to compute rankings for the
PageRank centrality

e Does not focus on other centrality measures

e Does not consider the multitask transfer between centralities.
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Can a neural network learn an internal representation that translates
into a vertex's centrality in a graph?

Can the representation from such a network benefit from the
correlations between centrality measures and hold information about
multiple centrality measures?

Will the algorithm learned by this neural network be scalable and be
able to run for more iterations?

Will the algorithm learned by this neural network behave correctly for
graphs larger than the ones it was trained?
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EXPERIMENTAL SETUP AND RESULTS

Figure: Examples of training instances with n = 64 vertices for each graph

distribution, clockwise from the top left: Erdés-Rényi in , Random power law
tree in , Holme-Kim in and Watts-Strogatz in . Source: Author
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EXPERIMENTAL SETUP AND RESULTS

Dataset  Size Range Instances per Graph Type

Train 32-128 4096
Test 32-128 4096
Large 128-256 64
Different 32-128 256
Sizes 32-256 256 - 15 T
Real 1174-4036 1x

Table: Dataset names and sizes. Source: Author.
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EXPERIMENTAL SETUP AND RESULTS

PARAMETERS FOR GRAPH GENERATION NETWORKS

Graph Distribution Parameters Dataset
Erdds-Rényi p=0.25 Train, Test, Large, Sizes
Random power law tree v=3 Train, Test, Large, Sizes
Watts-Strogatz k=4,p=0.25 Train, Test, Large, Sizes
Holme-Kim m=4,p=0.1 Train, Test, Large, Sizes

Circular Shell Pinter = 0.25, pintrqa = 0.1 Different

Barabasi-Albert m € U(2,5) Different

Table: Training instances generation parameters. Source: Author.
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REAL INSTANCES NETWORKS

Name Source  Vertices Edges Maximum Evefr;egee Minimum
power-eris1176 NR 1174 9861 100 16.8 2
econ-mahindas NR 1258 7619 206 12.1 2

socfb-haverford76 NR 1446 59590 374 82.4 1
ego-Facebook SN 4036 88243 1044 43.7 1
bio-SC-GT NR 1708 33982 549 39.8 1
ca-GrQc SN 4158 13428 81 6.46 1

Table: Statistics for the real instances and their source, where NR stands for
(ROSSI; AHMED, 2015) and SN for (LESKOVEC; KREVL, 2014) Source:
Author with data from (ROSSI; AHMED, 2015; LESKOVEC; KREVL, 2014).
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MULTITASKING

NETWORKS

e We will always consider a multitasking approach and a
non-multitasking

e When not multitasking, each centrality will have a separate model

e When multitasking, each centrality will share the same TGN block,
but will learn different output functions for each centrality
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EXPERIMENTAL SETUP AND RESULTS

APPROXIMATING CENTRALITY MEASURES NETWORKS

e Used the TGN model to approximate the centralities
e Three possible setups were considered:

C for the pure centrality value
CN1 for the normalised centrality value
CN2 for normalised centrality, with normalisation on the model’s
output
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EXPERIMENTAL SETUP AND RESULTS LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL

COMPARING METHODS NETWORKS

C CN1 CN2

Betweenness(R)  92.7% 119%  89.6%
Closeness(R) 77.8%  16.3%  15.3%

train Degree(R)  55.5% 38.9%  43.6%
Eigenvector(A)  0.0438  0.0251 0.0230
Betweenness(R)  91.7%  419%  94.2%

“large” Closeness(R) 274%  85.9%  75.0%
Degree(R) 58.9% 210%  50.6%
Eigenvector(A)  0.0569 0.0518  0.0734
Betweenness 0.989 3.52 1.05

“large” Closeness 3.52 5.26 4.90
“train” Degree 1.06 5.40 1.16
Eigenvector 1.3 2.06 3.19

Table: Errors (Relative/Absolute) of the multitask learning performance for the
proposed models on a sample of the “train” dataset and on the full “large”. The

best values are in bold. Source: Author 45/85




EXPERIMENTAL SETUP AND RESULTS LEARNING CENTRALITY
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RESULTS NETWORKS
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Figure: Training Performance for the CN2 model, and

. Source: Author
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RESULTS — TEST

LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

Error Type Centrality “test”
Betweenness 95.96/89.54
. Closeness 13.49/13.38
0
Relative (%) "pegree 16.75/43.39
Average 42.07/48.77
Absolute Eigenvector 0.01946/0.02286
Betweenness  0.01462/0.01464
Closeness  0.004785/0.003710
MSE Degree 0.03465/0.03705
Eigenvector  0.01694/0.008880
Average 0.01775/0.01607

Table: Loss (MSE) and performance metrics (Relative/Absolute error) for the
CN2 model on the “test” dataset (without/with multitasking). The best values

are in bold. Source: Author
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RESULTS - LARGE

LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

Error Type Centrality “large”
Betweenness 91.03/94.17
. Closeness 79.00/74.76
0
Relative (%) "pegree 27.88/50.06
Average 65.97/72.99
Absolute Eigenvector ~ 0.08311/0.07214
Betweenness  0.01462/0.01464
Closeness  0.004785/0.003710
MSE Degree 0.03465/0.03705
Eigenvector  0.01694/0.008880
Average 0.01775/0.01607

Table: Loss (MSE) and performance metrics (Relative/Absolute error) for the
CN2 model on the “large” dataset (without/with multitasking). The best values

are in bold. Source: Author
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RESULTS — DIFFERENT

LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

Error Type Centrality “different”
Betweenness 99.94/83.88
. Closeness 19.13/21.35
0
Relative (%) "pegree 25.84/45.32
Average 48.30/50.18
Absolute Eigenvector 0.04854/0.05282
Betweenness  0.001376,/0.001445
Closeness 0.008956/0.01079
MSE Degree 0.01026/0.01758
Eigenvector  0.003974/0.004940
Average 0.006142/0.008689

Table: Loss (MSE) and performance metrics (Relative/Absolute error) for the
CN2 model on the “different” dataset (without/with multitasking). The best

values are in bold. Source: Author
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Results were unsatisfactory.

REPTrees and simpler neural models in GRANDO; LAMB (2015)
obtained better relative errors.

However, CN2 model performed better in minimising the Mean
Squared Error

Maybe further pre-processing could improve performance
However, the task here is significantly harder

(GRANDO; LAMB, 2016; GRANDO; GRANVILLE; LAMB, 2018;
GRANDO; LAMB, 2018) focused on ranking the centrality measures.
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COMPARING CENTRALITY MEASURES NETWORKS

e Turning to producing rankings for each centrality measure.

e Considered a comparison matrix as a form of producing a ranking
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MEASURES WITH GRAPH NEURAL

EXPERIMENTAL SETUP AND RESULTS

COMPARISON MATRIX NETWORKS

P(U1 > U1) P(Ug >, Ul) P(U3 >, Ul)
P(’Ul >. ’02) P(’UQ >, ’UQ) P('Ug > '1)2)

o o O
o O =
O = =

P(’Ul > ’Ug) P(’UQ > ’Ug) P(Ug > 1}3)

Figure: Example of a fuzzy comparison matrix. Source: Altered from (AVELAR
et al., 2018)
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EXPERIMENTAL SETUP AND RESULTS

COMPARING CENTRALITY MEASURES NETWORKS

e Also allows one to consider two possible setups

RC Which is trained as the CN2 model, but with the performance
based on the comparisons
RN Which is a model that computes the comparisons “natively”
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RESULTS FOR THE APPROXIMATION METHOD  networks
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Figure: Loss plotted in red and and accuracy in and purple for

training without and with multitasking, respectively. Source: Author
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Figure: Loss plotted in red and and accuracy in and purple for

training without and with multitasking, respectively. Source: Author
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LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
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EXPERIMENTAL SETUP AND RESULTS

RESULTS — TEST

Model Centrality P (%) R (%) TN (%) Acc (%)

Betweenness  90.26/87.18 88.52/87.24 90.99/88.89 89.83/87.94
Closeness 88.39/86.88 84.54/81.96 89.75/88.72 87.30/85.52

RN Degree 99.27/98.31 94.94/92.41 99.44/98.98 97.64/96.38
Eigenvector  86.24/89.80 90.18/88.26 82.32/90.41 86.28/89.40

Average  91.04/90.54 89.55/87.47 90.62/91.75 90.26/89.91
Betweenness  64.04/58.60 64.58/59.25 71.01/65.54 68.73/63.29
Closeness 13.36/15.84 13.56/16.06 19.77/22.01 16.89/19.25

RC Degree 13.23/03.87 14.23/05.30 33.77/24.60 27.16/17.78
Eigenvector  17.07/14.09  17.07/14.09  21.43/18.58  19.38/16.46
Average 26.93/23.10 27.36/23.67 36.50/32.68 33.04/29.20

Table: Performance metrics (Precision, Recall, True Negative rate, Accuracy) for
both models on the “test” dataset (without/with multitasking). The best values
are in bold. Source: Author
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EXPERIMENTAL SETUP AND RESULTS

RESULTS - LARGE

LEARNING CENTRALITY

MEASURES WITH GRAPH NEURAL

NETWORKS

Model Centrality P (%) R (%) TN (%) Acc (%)

Betweenness  78.67/85.12 87.39/75.87 69.44/88.10 78.35/81.83
Closeness 63.32/69.95 61.19/58.36 89.04/88.94 75.60/74.12

RN Degree 77.16/76.82 73.44/70.85 99.82/98.80 87.42/85.85
Eigenvector 70.96/77.56 67.66/87.16 89.76/65.91 78.79/76.54

Average  72.53/77.36 72.42/73.06 87.01/85.44 80.04/79.59
Betweenness  64.89/59.87 65.14/60.59 71.45/66.01 69.18/64.09
Closeness 13.60/15.65 13.61/15.66 16.42/18.35 15.06/17.05

RC Degree 24.51/26.58 25.38/28.95 43.82/45.09 37.93/39.90
Eigenvector 14.78/15.54 14.76/15.53 16.63/17.46 15.72/16.52

Average 29.87/29.41 29.72/30.18 37.08/36.73 34.48/34.39

Table: Performance metrics (Precision, Recall, True Negative rate, Accuracy) for
both models on the “large” dataset (without/with multitasking). The best
values are in bold. Source: Author
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RESULTS — DIFFERENT

LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

Centrality P (%) R (%) TN (%) Acc (%)
Betweenness 81.21/77.92 77.47/77.01 81.82/78.45 79.71/77.75
Closeness 81.66/79.57 75.25/77.47 84.22/81.45 79.88/79.52
Degree 86.38/87.44 72.46/74.88 89.04/90.98 82.08/83.97
Eigenvector  84.95/79.59 87.95/80.54 83.80/79.95 85.84/80.24
Average 83.55/81.13 78.28/77.48 84.72/82.71 81.88/80.37

Table: Performance metrics (Precision, Recall, True Negative rate, Accuracy) for
the RN model on the “different” dataset (without/with multitasking). The best

values are in bold. Source: Author
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EXPERIMENTAL SETUP AND RESULTS LEARNING CENTRALITY

MEASURES WITH GRAPH NEURAL
RESULTS - REAL NETWORKS

Accuracy (%)

Centrality PowEris EconMah SocHav SC-GT  GrQc EGO  Average

Betweenness  64/66 77/81 84/85  84/83 81/75 TT/T5  T8/66
Closeness 71/65 81/83  60/74 77/80 62/68 64/58  69/61

Degree 78/82  86/83  67/73 80/80 82/84 74/72  T8/68
Eigenvector 67/63 73/73 87/69  86/79 62/64 66/57 74/58
Average 70/69  79/80  74/75 82/81 72/73 70/65  7T5/74

Table: Accuracy for the RN model on the “real” dataset (without/with
multitasking). The best values are in bold. Source: Author
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RESULTS — VARYING SIZES MULTITASKING NETWORKS
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Figure: Overall accuracy multitasking RN model by number of vertices Source:
Author
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Figure: Overall accuracy non-multitasking RN model by number of vertices.
Betweenness (left) and closeness. Source: Author
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Figure: Overall accuracy non-multitasking RN model by number of vertices.
Degree (left) and eigenvector. Source: Author
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INTERPRETING THE INTERNAL LEARNING CENTRALITY

MEASURES WITH GRAPH NEURAL

REPRESENTATION NETWORKS

e Used Principal Component Analysis (PCA) on the Embeddings

e It was expected that the PCA had a good visual fit with the centrality
in question

e Many different behaviours were observed, both good and bad
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GOOD VISUAL FIT - GOOD ACCURACY NETWORKS

t 02, acc 50.30 t 12, acc 74.98 t 22, acc 82.07 t 32, acc 89.06

log scale eigenvector value

PO @O A O
A

1.0 0.0 0.5 1.0 0.0 0.5
Normalized PCA value

0.0

o

Figure: 1D PCA of a non-multitasking model for the eigenvector centrality of an
Watts-Strogatz Small World graph on the “large” dataset. Source: Author
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GOOD VISUAL FIT - BAD ACCURACY NETWORKS

t 02, acc 50.19 t 12, acc 50.19 t 22, acc 49.81 t 32, acc 49.88

3x1073
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Figure: 1D PCA of a non-multitasking model for the betweenness centrality of
an Erdos-Renyi graph on the “large” dataset. Source: Author
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log scale degree value

EXPERIMENTAL SETUP AND RESULTS

BAD VISUAL FIT - GOOD ACCURACY

t 02, acc 68.51

t 12, acc 95.49

t 22, acc 96.35

LEARNING CENTRALITY

MEASURES WITH GRAPH NEURAL

NETWORKS

t 32, acc 98.59
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Figure: 1D PCA of a multitasking model for the degree centrality of a
Powerlaw-Tree graph on the “small” dataset. Source: Author
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Figure: 1D PCA of a multitasking model for the closeness centrality of a Shell
graph on the “different” dataset. Source: Author
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EXTRA NETWORKS

EXPERIMENTAL SETUP AND RESULTS

t 02, acc 70.30 t 12, acc 93.00 t 22, acc 93.65 t 32, acc 93.20
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Figure: 1D PCA of a non-multitasking model for the betweenness centrality of
an Barabasi-Albert graph on the "different”. Source: Author
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log scale degree value

EXPERIMENTAL SETUP AND RESULTS

EXTRA

t 02, acc 61.95

t12, acc 79.73

t 22, acc 93.21
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NETWORKS
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S T .
O [e d
OO
(o] [co3] a
1072 4 o { @» ap |
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5

Normalized PCA value

Figure: 1D PCA of a non-multitasking model for the degree centrality of a
Holme-Kim graph on the “large”. Source: Author
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EXPERIMENTAL SETUP AND RESULTS

GENERALISING WITH MORE ITERATIONS NETWORKS

Does the model improve its performance when ran for more iterations?

e Again, many behaviours on the PCA
In the end, the model generally had worse performance than when ran
for the usual 32 iterations

e One possibility for this might be the lack of an adversarial training
strategy, as done by SELSAM et al. (2018)
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Figure: 1D PCA of a multitasking model for the eigenvector centrality of a
Powerlaw Tree graph on the “small”. Source: Author
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UNSTABLE PCA WITH MORE ITERATIONS NETWORKS

t 32, acc 91.50 t 64, acc 29.59 t 96, acc 48.14 t 128, acc 90.75

6x1071 %

@080 %038 %}
A B | | YA, %

0.0 0.5 1.000 05 1000 05 1000 05 1.0
Normalized PCA value

log scale closeness value

5x 1071

Figure: 1D PCA of a multitasking model for the closeness centrality of an
Erdés-Renyi graph on the “small”. Source: Author
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Analysis of the performance of a GNN model for 4 different
centralities.

Analysis of the performance when multitasking.

Analysis of interpretability of the model.

e Comparison framework for generating rankings natively.
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1 Can a neural network infer a vertex's centrality value only from the
network structure?
e In short — Yes
e Model had worse performance in predicting the centrality than
with purely numeric information about the node.
e However, the task at hand is more difficult
e Model could rank with higher accuracy
2 Can a neural network learn an internal representation that translates
into a vertex's centrality in a graph?
e Yes
e PCA seemed to show visual correlation with centralities
3 Can the representation from such a network benefit from the
correlations between centrality measures and hold information about
multiple centrality measures?
e Apparently it didn't
e The performance didn't drop significantly
e Model is lighter if many centralities are learned jointly than if ran
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4 Will the algorithm learned by this neural network be scalable and be
able to run for more iterations?
e |t didn't
e Model was unstable when ran out of its “comfort zone”
5 Will the algorithm learned by this neural network behave correctly for
graphs larger than the ones it was trained?

It somehow performed well

There was a drop in performance

Such decay was expected

May be due to global information and numerical problems
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CONCLUSIONS

e More centrality measures.

e Deeper analysis of internal embeddings.

Training with an adversarial dataset.

e Experimenting with Transfer Learning instead of Multitask Learning
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Figure: Relative Error (degree centrality) on the “train” (in red) and “large”
datasets (in ) by embedding dimensionality d for the CN2 model. Source:
Author
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Figure: Overall relative error for the non-multitasking RN model by number of
vertices. Betweenness (left) and closeness. Source: Author
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: procedure GNN-CENTRALITY(G = (V,&),C)
: Mi, j] + 1if (v;,v;) € € else 0
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6
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msg(
end for
for c € C do
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10: end for
11: end procedure
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Figure: Accuracy (degree centrality) on the “train” (in red) and “large” datasets
(in ) by embedding dimensionality d for the RN model. Source: Author
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