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INTRODUCTION

DEEP LEARNING

• Machine Learning subarea:

• Structures of linear transformations and nonlinear applications.
• Learning internal representations of data.
• “Grown” from Artificial Neural Networks.

• Success generally attributed to the heightened parallel processing
capacity with GPUs and due to the high data availability.

• Becoming ubiquitous in our daily lives, with manifold applications on
diverse areas.
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RECENT SUCCESSES – IMAGE PROCESSING

Figure: Recent success which uses deep learning for image processing – Image
generation with the StyleGAN model. Source: KARRAS; LAINE; AILA (2018)
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RECENT SUCCESSES – AUDIO PROCESSING

Figure: Recent success which uses deep learning for audio processing – Sound
localisation with the PixelPlayer model. Source: ZHAO et al. (2018)
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INTRODUCTION

RECENT SUCCESSES – TEXT PROCESSING

Figure: Recent success which uses deep learning for text processing – OpenAI’s
GPT-2 model. Source: OpenAI (RADFORD et al., 2019)
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INTRODUCTION

RECENT SUCCESSES – ROBOTICS

Figure: Recent success which uses deep learning for robotics. Source:
OpenAI(OPENAI et al., 2018)
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RELATIONAL PROBLEMS – GO

Figure: Recent sucesss that uses deep learning for a relational problem – In this
case, playing the chinese boardgame Go. Source: Nature (SILVER et al., 2016)
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INTRODUCTION

RELATIONAL PROBLEMS – NEURAL
COMPUTERS

Figure: Recent sucesss that uses deep learning for a relational problem – In this
case, the DNC model performs well in question answering and graph processing
tasks. Source: Deepmind (GRAVES et al., 2016)
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INTRODUCTION

RELATIONAL PROBLEMS – RELATIONAL
VISUAL QUESTION ANSWERING

Figure: Recent sucessses that uses deep learning for a relational problem – In this
case, answering relational questions about a synthetic image. Source:
SANTORO et al. (2017)

10/85



1 LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

INTRODUCTION

RELATIONAL PROBLEMS – SAT SOLVING

Figure: Recent sucesss that uses deep learning for a relational problem – In this
case, solving SAT instances. Source: SELSAM et al. (2018)
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INTRODUCTION

NETWORK SCIENCE

Figure: A partial map of the Internet based in 2005, made by opte.org: The
relational structures that support our modern societies have been growing larger
and more interconnected by the day. Source: Wikimedia Commons
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NETWORKS AND GRAPHS
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Figure: The connections of the 34 members of Zachary’s Karate Club (WAYNE,
1977), a small social network. Here it is easy to see the equivalence between
networks and graphs. Source: Author, data from (WAYNE, 1977) plotted using
the Networkx Python package (HAGBERG; SWART; CHULT, 2008)
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SCALE-FREE PROPERTY OF REAL NETWORKS

Figure: Two networks consisting of the same vertices, but with different degree
distributions, exemplifying the Scale-Free property. Source: BARABÁSI et al.
(2016)
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CENTRALITY MEASURES

• Defines how “important” an entity is

• Many definitions of importance
• Uses in (social) network analysis
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Figure: Zachary’s Karate Club with nodes sized by degree. Source: Author, data
from (WAYNE, 1977) plotted using the Networkx Python package (HAGBERG;
SWART; CHULT, 2008)
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Figure: Zachary’s Karate Club with nodes sized by betweenness. Source: Author,
data from (WAYNE, 1977) plotted using the Networkx Python package
(HAGBERG; SWART; CHULT, 2008)
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Figure: Zachary’s Karate Club with nodes sized by closeness. Source: Author,
data from (WAYNE, 1977) plotted using the Networkx Python package
(HAGBERG; SWART; CHULT, 2008)
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EIGENVECTOR
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Figure: Zachary’s Karate Club with nodes sized by eigenvector. Source: Author,
data from (WAYNE, 1977) plotted using the Networkx Python package
(HAGBERG; SWART; CHULT, 2008)
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GRAPH NEURAL NETWORKS

CONVOLUTIONAL NEURAL NETWORKS

Figure: The typical architecture of a CNN. Source: Wikimedia Commons
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CONVOLUTIONAL NEURAL NETWORKS

X1 X2 X3 X4 X5 X6 X7 X8 X9

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

a a a a a a a aA A A A A A A A

Figure: The application of a 1-dimensional convolutional kernel on a discrete
1-dimensional space. Blue circles are inputs, red circles are outputs and
green backgrounds are to represent the whole neural network block. Source:
Author, based on (OLAH, 2014)
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GRAPH NEURAL NETWORKS

RECURRENT NEURAL NETWORKS

Figure: Deep Speech RNN architecture. Source: HANNUN et al. (2014)
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GRAPH NEURAL NETWORKS

RECURRENT NEURAL NETWORKS
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Figure: An unrolled recursive neural network. Yellow squares are neural network
layers, blue circles are inputs, red circles are outputs and green backgrounds
are to represent the whole neural network block. Source: Author, based on
(OLAH, 2015)
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GRAPH NEURAL NETWORKS

RELATIONAL INDUCTIVE BIAS

Figure: There is weight reuse across convolutional (middle) and recurrent (right)
layers, but not in fully connected (left) layers. Source: BATTAGLIA et al. (2018)
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RELATIONAL INDUCTIVE BIAS

• RNNs work on sequences

• CNNs work on discrete spaces
• What about graphs?
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GRAPH NEURAL NETWORKS

GRAPH NEURAL NETWORKS

Figure: The representation of the Graph Neural Network Model, with the vertex
being updated using the information on its neighbourhood Source: SCARSELLI
et al. (2009)
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GRAPH NEURAL NETWORKS

GRAPH NETWORKS

Figure: The representation of the Graph Network Model. Source: BATTAGLIA
et al. (2018)
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AND HYPERGRAPHS?

• BATTAGLIA et al. (2018) leaves no space for representing
hypergraphs

• The GNN model in SCARSELLI et al. (2009) is more general, and
allows such operations

• Reformalisation of the GNN model to generalise the concept of a
vertex to a vertex’s type.
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TYPED GRAPH NEURAL NETWORKS

Iteration (t)
Incoming

Neighbourhood

Message (µ)

Iteration (t)
Update (γ)

Iteration (t− 1)
Update (γ)

Iteration (t+ 1)
Update (γ)

Message (µ)

Iteration (t+ 1)
Outgoing

Neighbourhood

Iterations

Figure: Pictorial representation of a Typed Graph Network from the perspective
of a vertex v. Source: Author
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GRAPH NEURAL NETWORKS

TYPED GRAPH NEURAL NETWORKS I

1: procedure TGN(G = (V =
N⋃

i=1
Vi, E =

K⋃
k=1
Ek), I =

N⋃
i=1

Vi
(0))

2: for t = 1 . . . tmax do
3: for i = 1 . . . N do
4: Let Ki ← {k | ∀k, πk = (s, i)}
5: for all vb ∈ Vi do
6: for all k ∈ Ki do
7: µ

(t)
k,b ← {µk(Vs

(t−1)
(a) ) | ∀va ∈ Vs, (va, vb) ∈ Ek}

8: α
(t)
k,vt
← αk(µ(t)

k,b)
9: end for
10: ρ

(t)
i,b = ρi({α(t)

k,b | ∀k ∈ Ki})
11: Vi

(t)
(b) ← γi(Vi

(t), ρ
(t)
i,b)

12: end for
13: end for
14: end for
15: return {Vi

(tmax) | i = 1 . . . N}
16: end procedure
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GRAPH NEURAL NETWORKS

TYPED GRAPH NEURAL NETWORKS

Ki = {k | ∀i, πk = (s, i)} (1)

µ
(t)
k,b = {µk(Vs

(t−1)
(a) ) | ∀va ∈ Vs, (va, vb) ∈ Ek} (2)

α
(t)
k,b = αk(µ(t)

k ) | 1 ≤ k ≤ K (3)

ρ
(t)
i,b = ρi(α(t)

k,b) ∀1 ≤ i ≤ N, vb ∈ Vi (4)

Vi
(t)
(b) = γ(Vi

(t−1)
(b) , ρ

(t)
i ) (5)
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RELATED WORK

GRANDO; LAMB

• GRANDO; LAMB (2015) and GRANDO; LAMB (2016) uses neural
networks to estimate centrality measures

• Uses a priori knowledge of other centralities to approximate a
different one.

• GRANDO; LAMB (2018) also produces a ranking of the centrality
measures, but again do so using the degree and eigenvector
centralities as input.
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RELATED WORK

KUMAR; MEHROTRA; MOHAN

• KUMAR; MEHROTRA; MOHAN (2015) uses local and global
features:

• number of vertices in a network
• number of edges in a network
• vertex degree
• sum of the degrees on vertex’s neighbourhood

35/85



3 LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

RELATED WORK

KUMAR; MEHROTRA; MOHAN

• KUMAR; MEHROTRA; MOHAN (2015) uses local and global
features:
• number of vertices in a network

• number of edges in a network
• vertex degree
• sum of the degrees on vertex’s neighbourhood

35/85



3 LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

RELATED WORK

KUMAR; MEHROTRA; MOHAN

• KUMAR; MEHROTRA; MOHAN (2015) uses local and global
features:
• number of vertices in a network
• number of edges in a network

• vertex degree
• sum of the degrees on vertex’s neighbourhood

35/85



3 LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

RELATED WORK

KUMAR; MEHROTRA; MOHAN

• KUMAR; MEHROTRA; MOHAN (2015) uses local and global
features:
• number of vertices in a network
• number of edges in a network
• vertex degree

• sum of the degrees on vertex’s neighbourhood

35/85



3 LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

RELATED WORK

KUMAR; MEHROTRA; MOHAN

• KUMAR; MEHROTRA; MOHAN (2015) uses local and global
features:
• number of vertices in a network
• number of edges in a network
• vertex degree
• sum of the degrees on vertex’s neighbourhood

35/85



3 LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

RELATED WORK

SCARSELLI ET AL., 2005

• SCARSELLI et al. (2005) uses GNNs to compute rankings for the
PageRank centrality

• Does not focus on other centrality measures
• Does not consider the multitask transfer between centralities.
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EXPERIMENTAL SETUP AND RESULTS

RESEARCH HYPOTHESIS

1 Can a neural network infer a vertex’s centrality value only from the
network structure?

2 Can a neural network learn an internal representation that translates
into a vertex’s centrality in a graph?

3 Can the representation from such a network benefit from the
correlations between centrality measures and hold information about
multiple centrality measures?

4 Will the algorithm learned by this neural network be scalable and be
able to run for more iterations?

5 Will the algorithm learned by this neural network behave correctly for
graphs larger than the ones it was trained?
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EXPERIMENTAL SETUP AND RESULTS

DATASET

Figure: Examples of training instances with n = 64 vertices for each graph
distribution, clockwise from the top left: Erdős-Rényi in red, Random power law
tree in green, Holme-Kim in blue and Watts-Strogatz in yellow. Source: Author
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EXPERIMENTAL SETUP AND RESULTS

DATASETS

Dataset Size Range Instances per Graph Type
Train 32-128 4096
Test 32-128 4096
Large 128-256 64

Different 32-128 256
Sizes 32-256 256 · 15 †
Real 1174-4036 1∗

Table: Dataset names and sizes. Source: Author.
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EXPERIMENTAL SETUP AND RESULTS

PARAMETERS FOR GRAPH GENERATION

Graph Distribution Parameters Dataset

Erdős-Rényi p = 0.25 Train, Test, Large, Sizes
Random power law tree γ = 3 Train, Test, Large, Sizes

Watts-Strogatz k = 4, p = 0.25 Train, Test, Large, Sizes
Holme-Kim m = 4, p = 0.1 Train, Test, Large, Sizes
Circular Shell pinter = 0.25, pintra = 0.1 Different
Barabási-Albert m ∈ U(2, 5) Different

Table: Training instances generation parameters. Source: Author.
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EXPERIMENTAL SETUP AND RESULTS

REAL INSTANCES

Name Source Vertices Edges Degree
Maximum Average Minimum

power-eris1176 NR 1174 9861 100 16.8 2
econ-mahindas NR 1258 7619 206 12.1 2

socfb-haverford76 NR 1446 59590 374 82.4 1
ego-Facebook SN 4036 88243 1044 43.7 1

bio-SC-GT NR 1708 33982 549 39.8 1
ca-GrQc SN 4158 13428 81 6.46 1

Table: Statistics for the real instances and their source, where NR stands for
(ROSSI; AHMED, 2015) and SN for (LESKOVEC; KREVL, 2014) Source:
Author with data from (ROSSI; AHMED, 2015; LESKOVEC; KREVL, 2014).

42/85



4 LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

EXPERIMENTAL SETUP AND RESULTS

MULTITASKING

• We will always consider a multitasking approach and a
non-multitasking

• When not multitasking, each centrality will have a separate model
• When multitasking, each centrality will share the same TGN block,

but will learn different output functions for each centrality
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COMPARING METHODS

C CN1 CN2

“train”

Betweenness(R) 92.7% 119% 89.6%
Closeness(R) 77.8% 16.3% 15.3%
Degree(R) 55.5% 38.9% 43.6%

Eigenvector(A) 0.0438 0.0251 0.0230

“large”

Betweenness(R) 91.7% 419% 94.2%
Closeness(R) 274% 85.9% 75.0%
Degree(R) 58.9% 210% 50.6%

Eigenvector(A) 0.0569 0.0518 0.0734

“large”
“train”

Betweenness 0.989 3.52 1.05
Closeness 3.52 5.26 4.90
Degree 1.06 5.40 1.16

Eigenvector 1.3 2.06 3.19

Table: Errors (Relative/Absolute) of the multitask learning performance for the
proposed models on a sample of the “train” dataset and on the full “large”. The
best values are in bold. Source: Author 45/85
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Figure: Training Performance for the CN2 model, with multitasking and without
multitasking. Source: Author
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RESULTS – TEST

Error Type Centrality “test”

Relative (%)

Betweenness 95.96/89.54
Closeness 13.49/13.38
Degree 16.75/43.39
Average 42.07/48.77

Absolute Eigenvector 0.01946/0.02286

MSE

Betweenness 0.01462/0.01464
Closeness 0.004785/0.003710
Degree 0.03465/0.03705

Eigenvector 0.01694/0.008880
Average 0.01775/0.01607

Table: Loss (MSE) and performance metrics (Relative/Absolute error) for the
CN2 model on the “test” dataset (without/with multitasking). The best values
are in bold. Source: Author
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RESULTS – LARGE

Error Type Centrality “large”

Relative (%)

Betweenness 91.03/94.17
Closeness 79.00/74.76
Degree 27.88/50.06
Average 65.97/72.99

Absolute Eigenvector 0.08311/0.07214

MSE

Betweenness 0.01462/0.01464
Closeness 0.004785/0.003710
Degree 0.03465/0.03705

Eigenvector 0.01694/0.008880
Average 0.01775/0.01607

Table: Loss (MSE) and performance metrics (Relative/Absolute error) for the
CN2 model on the “large” dataset (without/with multitasking). The best values
are in bold. Source: Author
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RESULTS – DIFFERENT

Error Type Centrality “different”

Relative (%)

Betweenness 99.94/83.88
Closeness 19.13/21.35
Degree 25.84/45.32
Average 48.30/50.18

Absolute Eigenvector 0.04854/0.05282

MSE

Betweenness 0.001376/0.001445
Closeness 0.008956/0.01079
Degree 0.01026/0.01758

Eigenvector 0.003974/0.004940
Average 0.006142/0.008689

Table: Loss (MSE) and performance metrics (Relative/Absolute error) for the
CN2 model on the “different” dataset (without/with multitasking). The best
values are in bold. Source: Author
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COMPARING WITH RELATED WORK

• Results were unsatisfactory.

• REPTrees and simpler neural models in GRANDO; LAMB (2015)
obtained better relative errors.

• However, CN2 model performed better in minimising the Mean
Squared Error

• Maybe further pre-processing could improve performance
• However, the task here is significantly harder
• (GRANDO; LAMB, 2016; GRANDO; GRANVILLE; LAMB, 2018;

GRANDO; LAMB, 2018) focused on ranking the centrality measures.
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COMPARING CENTRALITY MEASURES

• Turning to producing rankings for each centrality measure.

• Considered a comparison matrix as a form of producing a ranking
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COMPARISON MATRIX

P (v1 >c v1) P (v2 >c v1) P (v3 >c v1)
P (v1 >c v2) P (v2 >c v2) P (v3 >c v2)
P (v1 >c v3) P (v2 >c v3) P (v3 >c v3)




0 1 1
0 0 1
0 0 0




Figure: Example of a fuzzy comparison matrix. Source: Altered from (AVELAR
et al., 2018)
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COMPARING CENTRALITY MEASURES

• Also allows one to consider two possible setups

RC Which is trained as the CN2 model, but with the performance
based on the comparisons

RN Which is a model that computes the comparisons “natively”
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RESULTS FOR THE APPROXIMATION METHOD
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Figure: Loss plotted in red and blue and accuracy in green and purple for
training without and with multitasking, respectively. Source: Author
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RESULTS FOR THE NATIVE METHOD
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Figure: Loss plotted in red and blue and accuracy in green and purple for
training without and with multitasking, respectively. Source: Author
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RESULTS – TEST

Model Centrality P (%) R (%) TN (%) Acc (%)

RN

Betweenness 90.26/87.18 88.52/87.24 90.99/88.89 89.83/87.94
Closeness 88.39/86.88 84.54/81.96 89.75/88.72 87.30/85.52
Degree 99.27/98.31 94.94/92.41 99.44/98.98 97.64/96.38

Eigenvector 86.24/89.80 90.18/88.26 82.32/90.41 86.28/89.40
Average 91.04/90.54 89.55/87.47 90.62/91.75 90.26/89.91

RC

Betweenness 64.04/58.60 64.58/59.25 71.01/65.54 68.73/63.29
Closeness 13.36/15.84 13.56/16.06 19.77/22.01 16.89/19.25
Degree 13.23/03.87 14.23/05.30 33.77/24.60 27.16/17.78

Eigenvector 17.07/14.09 17.07/14.09 21.43/18.58 19.38/16.46
Average 26.93/23.10 27.36/23.67 36.50/32.68 33.04/29.20

Table: Performance metrics (Precision, Recall, True Negative rate, Accuracy) for
both models on the “test” dataset (without/with multitasking). The best values
are in bold. Source: Author
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RESULTS – LARGE

Model Centrality P (%) R (%) TN (%) Acc (%)

RN

Betweenness 78.67/85.12 87.39/75.87 69.44/88.10 78.35/81.83
Closeness 63.32/69.95 61.19/58.36 89.04/88.94 75.60/74.12
Degree 77.16/76.82 73.44/70.85 99.82/98.80 87.42/85.85

Eigenvector 70.96/77.56 67.66/87.16 89.76/65.91 78.79/76.54
Average 72.53/77.36 72.42/73.06 87.01/85.44 80.04/79.59

RC

Betweenness 64.89/59.87 65.14/60.59 71.45/66.01 69.18/64.09
Closeness 13.60/15.65 13.61/15.66 16.42/18.35 15.06/17.05
Degree 24.51/26.58 25.38/28.95 43.82/45.09 37.93/39.90

Eigenvector 14.78/15.54 14.76/15.53 16.63/17.46 15.72/16.52
Average 29.87/29.41 29.72/30.18 37.08/36.73 34.48/34.39

Table: Performance metrics (Precision, Recall, True Negative rate, Accuracy) for
both models on the “large” dataset (without/with multitasking). The best
values are in bold. Source: Author
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RESULTS – DIFFERENT

Centrality P (%) R (%) TN (%) Acc (%)

Betweenness 81.21/77.92 77.47/77.01 81.82/78.45 79.71/77.75
Closeness 81.66/79.57 75.25/77.47 84.22/81.45 79.88/79.52
Degree 86.38/87.44 72.46/74.88 89.04/90.98 82.08/83.97

Eigenvector 84.95/79.59 87.95/80.54 83.80/79.95 85.84/80.24
Average 83.55/81.13 78.28/77.48 84.72/82.71 81.88/80.37

Table: Performance metrics (Precision, Recall, True Negative rate, Accuracy) for
the RN model on the “different” dataset (without/with multitasking). The best
values are in bold. Source: Author
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RESULTS – REAL

Centrality Accuracy (%)
PowEris EconMah SocHav SC-GT GrQc EGO Average

Betweenness 64/66 77/81 84/85 84/83 81/75 77/75 78/66
Closeness 71/65 81/83 60/74 77/80 62/68 64/58 69/61
Degree 78/82 86/83 67/73 80/80 82/84 74/72 78/68

Eigenvector 67/63 73/73 87/69 86/79 62/64 66/57 74/58
Average 70/69 79/80 74/75 82/81 72/73 70/65 75/74

Table: Accuracy for the RN model on the “real” dataset (without/with
multitasking). The best values are in bold. Source: Author
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RESULTS – VARYING SIZES MULTITASKING
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Figure: Overall accuracy multitasking RN model by number of vertices Source:
Author
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RESULTS – VARYING SIZES
NON-MULTITASKING I
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Figure: Overall accuracy non-multitasking RN model by number of vertices.
Betweenness (left) and closeness. Source: Author

61/85



4 LEARNING CENTRALITY
MEASURES WITH GRAPH NEURAL
NETWORKS

EXPERIMENTAL SETUP AND RESULTS

RESULTS – VARYING SIZES
NON-MULTITASKING II
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Figure: Overall accuracy non-multitasking RN model by number of vertices.
Degree (left) and eigenvector. Source: Author
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INTERPRETING THE INTERNAL
REPRESENTATION

• Used Principal Component Analysis (PCA) on the Embeddings

• It was expected that the PCA had a good visual fit with the centrality
in question

• Many different behaviours were observed, both good and bad
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GOOD VISUAL FIT - GOOD ACCURACY
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Figure: 1D PCA of a non-multitasking model for the eigenvector centrality of an
Watts-Strogatz Small World graph on the “large” dataset. Source: Author
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GOOD VISUAL FIT - BAD ACCURACY
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Figure: 1D PCA of a non-multitasking model for the betweenness centrality of
an Erdös-Renyi graph on the “large” dataset. Source: Author
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BAD VISUAL FIT - GOOD ACCURACY
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Figure: 1D PCA of a multitasking model for the degree centrality of a
Powerlaw-Tree graph on the “small” dataset. Source: Author
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BAD VISUAL FIT - BAD ACCURACY
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Figure: 1D PCA of a multitasking model for the closeness centrality of a Shell
graph on the “different” dataset. Source: Author
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EXTRA
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Figure: 1D PCA of a non-multitasking model for the betweenness centrality of
an Barabási-Albert graph on the “different”. Source: Author
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Figure: 1D PCA of a non-multitasking model for the degree centrality of a
Holme-Kim graph on the “large”. Source: Author
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GENERALISING WITH MORE ITERATIONS

• Does the model improve its performance when ran for more iterations?

• Again, many behaviours on the PCA
• In the end, the model generally had worse performance than when ran

for the usual 32 iterations
• One possibility for this might be the lack of an adversarial training

strategy, as done by SELSAM et al. (2018)
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CONCLUSIONS I

1 Can a neural network infer a vertex’s centrality value only from the
network structure?

• In short – Yes
• Model had worse performance in predicting the centrality than
with purely numeric information about the node.
• However, the task at hand is more difficult
• Model could rank with higher accuracy

2 Can a neural network learn an internal representation that translates
into a vertex’s centrality in a graph?
• Yes
• PCA seemed to show visual correlation with centralities

3 Can the representation from such a network benefit from the
correlations between centrality measures and hold information about
multiple centrality measures?
• Apparently it didn’t
• The performance didn’t drop significantly
• Model is lighter if many centralities are learned jointly than if ran

separately
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CONCLUSIONS II

4 Will the algorithm learned by this neural network be scalable and be
able to run for more iterations?

• It didn’t
• Model was unstable when ran out of its “comfort zone”

5 Will the algorithm learned by this neural network behave correctly for
graphs larger than the ones it was trained?
• It somehow performed well
• There was a drop in performance
• Such decay was expected
• May be due to global information and numerical problems
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FUTURE WORK

• More centrality measures.

• Deeper analysis of internal embeddings.
• Training with an adversarial dataset.
• Experimenting with Transfer Learning instead of Multitask Learning
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Figure: Relative Error (degree centrality) on the “train” (in red) and “large”
datasets (in blue) by embedding dimensionality d for the CN2 model. Source:
Author
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APPROXIMATING – PROBLEM SIZE INFLUENCE
ON MULTITASK MODEL
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Figure: The overall relative (left) and absolute (right) error for the CN2
multitask model Source: Author
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APPROXIMATING – PROBLEM SIZE INFLUENCE
ON NON-MULTITASK MODEL I
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Figure: Overall relative error for the non-multitasking RN model by number of
vertices. Betweenness (left) and closeness. Source: Author
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APPROXIMATING – PROBLEM SIZE INFLUENCE
ON NON-MULTITASK MODEL I
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Figure: Overall relative (left) and absolute (right) error for the non-multitasking
RN model by number of vertices. Degree (left) and Eigenvector. Source: Author
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CENTRALITY-SPECIFIC GNN ALGORITHM

1: procedure GNN-Centrality(G = (V, E), C)
2: M[i, j]← 1 if (vi, vj) ∈ E else 0
3: V 1[i, :]← Vinit | ∀vi ∈ V
4: for t = 1 . . . tmax do
5: Vt+1,Vt+1

h ← Vu(Vt,M× srcmsg(Vt),MT × tgtmsg(Vt))
6: end for
7: for c ∈ C do
8: M'c [i, j]← cmpc(Vtmax [i, :],Vtmax [j, :]) | ∀ vi, vj ∈ V
9: M>c ←M'c

> 1
2

10: end for
11: end procedure
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FITTING THE DIMENSIONALITY OF THE
MODEL – COMPARING
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Figure: Accuracy (degree centrality) on the “train” (in red) and “large” datasets
(in blue) by embedding dimensionality d for the RN model. Source: Author
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